Как сделать проверку матрицы в excel?

Функции для работы с матрицами в Excel

В программе Excel с матрицей можно работать как с диапазоном. То есть совокупностью смежных ячеек, занимающих прямоугольную область.

Адрес матрицы – левая верхняя и правая нижняя ячейка диапазона, указанные черед двоеточие.

Формулы массива

Построение матрицы средствами Excel в большинстве случаев требует использование формулы массива. Основное их отличие – результатом становится не одно значение, а массив данных (диапазон чисел).

Порядок применения формулы массива:

  1. Выделить диапазон, где должен появиться результат действия формулы.
  2. Ввести формулу (как и положено, со знака «=»).
  3. Нажать сочетание кнопок Ctrl + Shift + Ввод.

В строке формул отобразится формула массива в фигурных скобках.

Чтобы изменить или удалить формулу массива, нужно выделить весь диапазон и выполнить соответствующие действия. Для введения изменений применяется та же комбинация (Ctrl + Shift + Enter). Часть массива изменить невозможно.

Решение матриц в Excel

С матрицами в Excel выполняются такие операции, как: транспонирование, сложение, умножение на число / матрицу; нахождение обратной матрицы и ее определителя.

Транспонирование

Транспонировать матрицу – поменять строки и столбцы местами.

Сначала отметим пустой диапазон, куда будем транспонировать матрицу. В исходной матрице 4 строки – в диапазоне для транспонирования должно быть 4 столбца. 5 колонок – это пять строк в пустой области.

  • 1 способ. Выделить исходную матрицу. Нажать «копировать». Выделить пустой диапазон. «Развернуть» клавишу «Вставить». Открыть меню «Специальной вставки». Отметить операцию «Транспонировать». Закрыть диалоговое окно нажатием кнопки ОК.
  • 2 способ. Выделить ячейку в левом верхнем углу пустого диапазона. Вызвать «Мастер функций». Функция ТРАНСП. Аргумент – диапазон с исходной матрицей.

Нажимаем ОК. Пока функция выдает ошибку. Выделяем весь диапазон, куда нужно транспонировать матрицу. Нажимаем кнопку F2 (переходим в режим редактирования формулы). Нажимаем сочетание клавиш Ctrl + Shift + Enter.

Преимущество второго способа: при внесении изменений в исходную матрицу автоматически меняется транспонированная матрица.

Складывать можно матрицы с одинаковым количеством элементов. Число строк и столбцов первого диапазона должно равняться числу строк и столбцов второго диапазона.

В первой ячейке результирующей матрицы нужно ввести формулу вида: = первый элемент первой матрицы + первый элемент второй: (=B2+H2). Нажать Enter и растянуть формулу на весь диапазон.

Умножение матриц в Excel

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число. Формула в Excel: =A1*$E$3 (ссылка на ячейку с числом должна быть абсолютной).

Умножим матрицу на матрицу разных диапазонов. Найти произведение матриц можно только в том случае, если число столбцов первой матрицы равняется числу строк второй.

В результирующей матрице количество строк равняется числу строк первой матрицы, а количество колонок – числу столбцов второй.

Для удобства выделяем диапазон, куда будут помещены результаты умножения. Делаем активной первую ячейку результирующего поля. Вводим формулу: =МУМНОЖ(A9:C13;E9:H11). Вводим как формулу массива.

Обратная матрица в Excel

Ее имеет смысл находить, если мы имеем дело с квадратной матрицей (количество строк и столбцов одинаковое).

Размерность обратной матрицы соответствует размеру исходной. Функция Excel – МОБР.

Выделяем первую ячейку пока пустого диапазона для обратной матрицы. Вводим формулу «=МОБР(A1:D4)» как функцию массива. Единственный аргумент – диапазон с исходной матрицей. Мы получили обратную матрицу в Excel:

Нахождение определителя матрицы

Это одно единственное число, которое находится для квадратной матрицы. Используемая функция – МОПРЕД.

Ставим курсор в любой ячейке открытого листа. Вводим формулу: =МОПРЕД(A1:D4).

Таким образом, мы произвели действия с матрицами с помощью встроенных возможностей Excel.

Как сделать проверку матрицы в excel?

Для вычисления обратной матрицы в MS EXCEL существует специальная функция МОБР() или англ. MINVERSE .

Понятие обратной матрицы определено только для квадратных матриц, определитель которых отличен от нуля.

СОВЕТ: О нахождении определителя матрицы читайте статью Вычисление определителя матрицы в MS EXCEL

Читать еще:  Как сделать красивый график в excel?

Матрица А -1 называется обратной для исходной матрицы А порядка n, если справедливы равенства А -1 *А=Е и А*А -1 =Е, где Е единичная матрица порядка n.

Для вычисления обратной матрицы в MS EXCEL существует специальная функция МОБР() .

Если элементы исходной матрицы 2 х 2 расположены в диапазоне А8:В9, то для получения транспонированной матрицы нужно (см. файл примера ):

  • выделить диапазон 2 х 2, который не пересекается с исходным диапазономА8:В9, например, Е8:F9
  • в Cтроке формул ввести формулу = МОБР (A8:B9) и нажать комбинацию клавиш CTRL+SHIFT+ENTER, т.е. нужно ввести ее как формулу массива (формулу можно ввести прямо в ячейку, предварительно нажав клавишу F2)

Если матрица большей размерности, то перед вводом формулы нужно выделить соответственно больший диапазон ячеек.

Массив может быть задан не только как интервал ячеек, например A8:B9, но и как массив констант, например =МОБР( ) . Запись с использованием массива констант позволяет не указывать элементы в отдельных ячейках, а разместить их в ячейке вместе с функцией. Массив в этом случае указывается по строкам: например, сначала первая строка 5;4, затем через двоеточие записывается следующая строка 3;2. Элементы отделяются точкой с запятой.

Ссылка на массив также может быть указана как ссылка на именованный диапазон.

Некоторые квадратные матрицы не могут быть обращены: в таких случаях функция МОБР() возвращает значение ошибки #ЧИСЛО!. Матрицы не могут быть обращены, у которых определитель равен 0.

Если функция МОБР() вернула значение ошибки #ЗНАЧ!, то либо число строк в массиве не равно числу столбцов, либо какая-либо из ячеек в массиве пуста или содержит текст. Т.е. функция МОБР() пустую ячейку воспринимает не как содержащую 0 (как например, это делает СУММ() ), а как ошибочное значение.

Вычисление обратной матрицы с помощью матрицы из алгебраических дополнений

СОВЕТ: Этот раздел стоит читать только продвинутым пользователям MS EXCEL. Кроме того материал представляет только академический интерес, т.к. есть функция МОБР() .

В файле примера приведен расчет обратной матрицы 3-го порядка через матрицу алгебраических дополнений.

Порядок действий при вычислении обратной матрицы:

  • Вычисляем определитель матрицы А (далее – Det(A)) и убеждаемся, что он отличен от нуля (в противном случае матрица А необратима)
  • Строим матрицу из алгебраических дополнений элементов исходной матрицы
  • Транспонируем матрицу из алгебраических дополнений
  • Умножаем каждый элемент транспонированной матрицы из алгебраических дополнений на 1/Det(A) и получаем обратную матрицу

В качестве проверки можно перемножить исходную и обратную матрицы. В результате должна получиться единичная матрица.

Приложение Excel выполняет целый ряд вычислений, связанных с матричными данными. Программа обрабатывает их, как диапазон ячеек, применяя к ним формулы массива. Одно из таких действий – это нахождение обратной матрицы. Давайте выясним, что представляет собой алгоритм данной процедуры.

Выполнение расчетов

Вычисление обратной матрицы в Excel возможно только в том случае, если первичная матрица является квадратной, то есть количество строк и столбцов в ней совпадает. Кроме того, её определитель не должен быть равен нулю. Для вычисления применяется функция массива МОБР. Давайте на простейшем примере рассмотрим подобное вычисление.

Расчет определителя

Прежде всего, вычислим определитель, чтобы понять, имеет первичный диапазон обратную матрицу или нет. Это значение рассчитывается при помощи функции МОПРЕД.

  1. Выделяем любую пустую ячейку на листе, куда будут выводиться результаты вычислений. Жмем на кнопку «Вставить функцию», размещенную около строки формул.

Запускается Мастер функций. В перечне записей, который он представляет, ищем «МОПРЕД», выделяем этот элемент и жмем на кнопку «OK».

Открывается окно аргументов. Ставим курсор в поле «Массив». Выделяем весь диапазон ячеек, в котором расположена матрица. После того, как его адрес появился в поле, жмем на кнопку «OK».

Расчет обратной матрицы

Теперь можно преступить к непосредственному расчету обратной матрицы.

    Выделяем ячейку, которая должна стать верхней левой ячейкой обратной матрицы. Переходим в Мастер функций, кликнув по значку слева от строки формул.

В открывшемся списке выбираем функцию МОБР. Жмем на кнопку «OK».

Как видим, появилось значение только в одной ячейке, в которой была формула. Но нам нужна полноценная обратная функция, поэтому следует скопировать формулу в другие ячейки. Выделяем диапазон, равнозначный по горизонтали и вертикали исходному массиву данных. Жмем на функциональную клавишу F2, а затем набираем комбинацию Ctrl+Shift+Enter. Именно последняя комбинация предназначена для обработки массивов.

Читать еще:  Как сделать дерево данных в excel?

Как видим, после этих действий обратная матрица вычислена в выделенных ячейках.

На этом расчет можно считать завершенным.

Если вы производите расчет определителя и обратной матрицы только при помощи ручки и бумаги, то над этим вычислением, в случае работы над сложным примером, можно ломать голову очень долго. Но, как видим, в программе Эксель данные вычисления производятся очень быстро, независимо от сложности поставленной задачи. Для человека, который знаком с алгоритмом подобных расчетов в этом приложении, все вычисление сводится к чисто механическим действиям.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Подробно рассмотрим особенности вычисления обратной матрицы в Excel и примеры использования функции МОБР.

В первую очередь освежим в памяти, что обратная матрица — это матрица (записывается как A -1 ), при умножении которой на исходную матрицу (A) дает единичную матрицу (E), другими словами выполняется формула:


Из определения следует важное свойство, что обратная матрица определена только для квадратных (т.е. число строк и столбцов совпадает) и невырожденных матриц (т.е. определитель отличен от нуля).

Как найти обратную матрицу в Excel?

В отличие от транспонированной матрицы, вычислить обратную матрицу технически несколько сложнее.
Посчитать обратную матрицу можно через построение матриц алгебраических дополнений и определителя исходной матрицы.
Однако сложность вычисления по данному алгоритму имеет квадратичную зависимость от порядка матрицы.
К примеру, для обращения квадратной матрицы 3-го порядка нам необходимо будет дополнительно сделать 9 матриц алгебраических дополнений, транспонировать итоговую созданную матрицу и поэлементно разделить на определитель начальной матрицы, что затрудняет возможность подобного расчета в Excel.
Поэтому воспользуемся стандартной функцией МОБР, которая позволит найти обратную матрицу:

Функция МОБР

Синтаксис и описание функции МОБР в Excel:

МОБР(массив)
Возвращает обратную матрицу (матрица хранится в массиве).

  • Массив(обязательный аргумент) — числовой массив, содержащий матрицу с одинаковым числом столбцов и строк.

Рассмотрим расчет обратной матрицы посредством функции МОБР на конкретном примере.
Предположим у нас имеется следующая квадратная матрица 3-го порядка:


Выделяем диапазон пустых ячеек E2:G4, куда мы в дальнейшем поместим обратную матрицу.
Не снимая выделения ячеек вводим формулу =МОБР(A2:C4) и нажимаем комбинацию клавиш Ctrl + Shift + Ввод для расчета формулы массива по данному диапазону:


При работе с функцией МОБР могут возникнуть следующие ошибки:

  • В том случае, когда исходная матрица является вырожденной (определитель равен нулю), то функция вернет ошибку #ЧИСЛО!;
  • Если число строк и столбцов в матрице не совпадает, то функция возвратит ошибку #ЗНАЧ!;
  • Функция также вернет ошибку #ЗНАЧ!, если хотя бы один из элементов матрицы является пустым или записан в текстовом виде.

Информатика / Учебные_материалы / Excel / Операции с матрицами в Excel

РХТУ им. Д.B. Менделеева Кафедра ИКМ Методическое пособие по изучению Excel

Операции с матрицами в Excel

Как и над числами, над матрицами можно проводить ряд операций, причем в случае с матрицами некоторые из операций являются специфическими.

Транспонированной называется матрица (A T ), в которой столбцы исходной матрицы (А) заменяются строками с соответствующими номерами.

Пример. Пусть в диапазон ячеек А1:Е2 введена матрица размера 2 x 5. Необходимо получить транспонированную матрицу.

Выделить указателем мыши при нажатой левой кнопке блок ячеек, где будет находиться транспонированная матрица. В нашем примере блок размера 5 x 2 в диапазоне А4:В8.

Нажать на панели инструментов Стандартная вставка функции.

В появившемся диалоговом окне Мастер функций в рабочем поле Категория выбрать Ссылки и массивы, а в рабочем поле Функция – имя функции ТРАСП (рис.1)

Появившееся диалоговое окно ТРАСП мышью отодвинуть в сторону от исходной матрицы и ввести диапазон исходной матрицы А1:Е2 в рабочее поле Массив (указателем мыши при нажатой левой кнопке). После чего, не нажимая кнопку ОК, нажать сочетание клавиш CTRL+SHIFT+ENTER (рис.2)

Читать еще:  Как сделать чтобы ссылка открывалась в excel?

Если транспонированная матрица не появилась в заданном диапазоне А4:В8, то надо щелкнуть указателем мыши в строке формул и повторить нажатие клавиш CTRL+SHIFT+ENTER.

В результате в диапазоне А4:В8 появится транспонированная матрица.

Вычисление определителя матрицы

Пусть в диапазон А1:С3 введена матрица. Необходимо вычислить определитель матрицы

Табличный курсор поставить в ячейку, в которой требуется получить значение определителя, например. В А4.

Нажать на панели инструментов Стандартная кнопку Вставка функции

В появившемся диалоговом окне Мастер функций в рабочем поле Категории выбрать Математические, а в рабочем поле Функция – имя функции МОПРЕД. После этого нажать на кнопку ОК.

Появившееся диалоговое окно МОПРЕД мышью отодвинуть в сторону от исходной матрицы и ввести диапазон исходной матрицы А1:С3 в рабочее поле Массив (указателем мыши при нажатой левой кнопке). После чего нажать кнопку ОК.

В ячейке А4 появится значение определителя матрицы.

Нахождение обратной матрицы

Пусть в диапазон А1:С3 введена матрица. Необходимо в диапазоне А5:С7 получить обратную матрицу.

Выделить блок ячеек под обратную матрицу (в нашем примере А5:С7)

Нажать на панели инструментов Стандартная кнопку Вставка функции

В появившемся диалоговом окне Мастер функций в рабочем поле Категории выбрать Математические, а в рабочем поле Функция – имя функции МОБР. После этого нажать на кнопку ОК.

Появившееся диалоговое окно МОБР мышью отодвинуть в сторону от исходной матрицы и ввести диапазон исходной матрицы А1:С3 в рабочее поле Массив (указателем мыши при нажатой левой кнопке). После чего, не нажимая кнопку ОК, нажать сочетание клавиш CTRL+SHIFT+ENTER

Если обратная матрица не появилась в заданном диапазоне А1:С3, то надо щелкнуть указателем мыши в строке формул и повторить нажатие клавиш CTRL+SHIFT+ENTER.

В результате в диапазоне А1:С3 появится обратная матрица.

Сложение и вычитание матриц, умножение и деление матрицы на число

Складывать (вычитать) матрицы можно одного размера. В Excel для выполнения операция сложения (вычитания) матриц используются формулы, вводимые в соответствующие ячейки.

Пример. Пусть матрица А введена в диапазон А1:С2, а матрица В – в диапазон А4:С5. Необходимо найти матрицу С, являющуюся их суммой, в диапазоне Е1:G2.

Табличный курсор установить в левый верхний угол результирующей матрицы – ячейку Е1.

Ввести формулу для вычисления первого элемента результирующей матрицы =А1+А4 (предварительно установить английскую раскладку клавиатуры)

Скопируйте введенную формулу в остальные ячейки результирующей матрицы.

В результате в ячейках E1:G2 появится матрица, равная сумме исходных матриц.

Подобным образом вычисляется разность матриц, только в формуле вместо знака +, ставится знак -.

Если необходимо умножить (разделить) матрицу А на число k, то формула будет иметь вид =А1*k.

Произведение двух матриц определено, если число столбцов первой матрицы произведения равно числу строк второй матрицы произведения.

Пример. Пусть матрица введена в диапазон A1:D3, а матрица В – в диапазон А4:В7. Необходимо найти произведение этих матриц С=А x В.

Выделить блок ячеек указателем мыши при нажатой левой кнопке под результирующую матрицу. Если матрица А имеет размерность 3 x 4, а матрица В имеет размерность 4 x 3, то результирующая матрица С имеет размерность 3 x 3. Поэтому следует внимательно следить, чтобы размерность матрицы С в точности соответствовала определению произведения двух матриц. Пусть матрица С будет размещаться в диапазоне F1:G3.

Нажать на панели инструментов Стандартная кнопку Вставка функции

В появившемся диалоговом окне Мастер функций в рабочем поле Категории выбрать Математические, а в рабочем поле Функция – имя функции МУМНОЖ. После этого нажать на кнопку ОК.

Появившееся диалоговое окно МУМНОЖ мышью отодвинуть в сторону от исходной матрицы и ввести диапазон первой матрицы А1:D3 в рабочее поле Массив1 (указателем мыши при нажатой левой кнопке), а диапазон матрицы В – А4:В7 ввести в рабочее поле Массив2. После чего, не нажимая кнопку ОК, нажать сочетание клавиш CTRL+SHIFT+ENTER (рис.3)

Если произведение матриц не появилось в заданном диапазоне А1:С3, то надо щелкнуть указателем мыши в строке формул и повторить нажатие клавиш CTRL+SHIFT+ENTER.

В результате в диапазоне F1:G3 появится обратная матрица.

Ссылка на основную публикацию
Adblock
detector