Как сделать тангенс в excel?

Тригонометрия в Excel: основные функции

Формулы тригонометрии – редкая и сложная задача для работы в Майкрософт Эксель. Тем не менее, здесь есть ряд встроенных функций, помогающих в геометрических расчетах. В этом посте мы рассмотрим основные из них, которые, в компании с учебниками и справочниками, могут решить многие математические задачи. Они участвуют в расчете площади, объема, угла наклона и т.д. Если Вы школьник, студент, или работаете, например, в сфере строительства, эта статья будет Вам очень полезна.

Для корректного расчета геометрических величин, Вам понадобятся познания в элементарных расчетах и некоторые из функций Excel. Так, функция КОРЕНЬ извлечет квадратный корень из заданного числа. Например, запишем: =КОРЕНЬ(121) , и получим результат «11». Хотя правильным решением будет «11» и «-11», программа возвращает только положительный результат в таких случаях.

Еще одна функция – ПИ() , не нуждается в аргументах и является зарезервированной константой. Ее результатом будет известное число 3,1415, описывающее соотношение длины окружности к ее диаметру. Эту функцию-константу можно активно применять в расчетах.

Радианы в градусы и градусы в радианы

Тригонометрические функции Excel, до которых мы еще доберемся, используют запись угла в радианах. Эта общепринятая практика часто бывает ненаглядной, ведь нам привычнее выражать угол в градусах. Чтобы устранить эту проблему, есть две функции преобразования величин:

  • ГРУДУСЫ(Угол в радианах) – преобразует радиальные величины в градусы
  • РАДИАНЫ(Угол вградусах) – наоборот, преобразует градусы в радианы.

Пользуясь этими функциями, Вы обеспечиваете совместимость и наглядность вычислений.

Прямые тригонометрические функции

Конечно, Вы знаете эти функции:

  • COS(Угол в радианах) – косинус угла, соотношение между прилежащим катетом и гипотенузой прямоугольного треугольника
  • SIN(Угол в радианах) – синус угла, отношение противолежащего катета к гипотенузе

Для удобства чтения формул, можно использовать вложенную функцию РАДИАНЫ и задать угол в градусах. Например, формула =COS(РАДИАНЫ(180)) вернет результат «-1».

Производные тригонометрические функции

Еще две функции Вам так же знакомы – это тангенс и котангенс:

  • TAN(Угол в радианах) – отношение длины противолежащего катета к прилежащему
  • COT(Угол в радианах) – обратная величина – соотношение прилежащего угла к противолежащему.

Здесь так же рекомендую использовать функции преобразования величин РАДИАНЫ и ГРАДУСЫ.

Другие тригонометрические функции

Среди прочих тригонометрических функций можно выделить секанс и косеканс:

  • SEC(Угол в радианах) – отношение гипотенузы к прилежащему катету
  • CSC(Угол в радианах) – отношение гипотенузы к противолежащему катету

Легко заметить, что секанс – обратно-пропорциональная величина к косинусу, косеканс – к синусу.

Обратные тригонометрические функции

Такие функции выполняют обратный расчет по отношению к перечисленным выше:

  • Арккосинус – это угол, который образуют прилежащий катет и гипотенуза с определенным косинусом. Чтобы посчитать эту величину, используйте функцию ACOS(Значение косинуса) .
  • Арксинус – угол между противолежащим катетом и гипотенузой с определенным синусом, вычисляется так: ASIN(Значение синуса) .
  • Арктангенс – угол между противолежащим и прилежащим катетами для заданного тангенса: ATAN(Значение тангенса) .
  • Арккотангенс – угол, для которого справедливо заданное значение котангенса: ACOT(Значение котангенса).

Все перечисленные функции вернут угол в радианах. Естественно, для перевода его в градусы, используем функцию ГРАДУСЫ .

Читать еще:  Подбор параметра в excel 2010 как сделать

Знание и умелое применение перечисленных функций, конечно, не сделает Вас богом в тригонометрии, но все же позволит выполнить сложные расчеты, «стоимость» которых часто довольно высока. Научитесь комбинировать их с другими функциями, построением графиков, чтобы получить максимальный эффект от полученных знаний.

Это все о тригонометрических функциях, спасибо, что читаете мой блог и развиваетесь в своих знаниях. Следующую статью я напишу об округлении чисел и очень Вам рекомендую ее не пропустить!

Применение функции арктангенса в Microsoft Excel

Арктангенс входит в ряд обратных тригонометрических выражений. Он противоположен тангенсу. Как и все подобные величины, он вычисляется в радианах. В Экселе есть специальная функция, которая позволяет производить расчет арктангенса по заданному числу. Давайте разберемся, как пользоваться данным оператором.

Вычисление значения арктангенса

Арктангенс является тригонометрическим выражением. Он исчисляется в виде угла в радианах, тангенс которого равен числу аргумента арктангенса.

Для вычисления данного значения в Экселе используется оператор ATAN, который входит в группу математических функций. Единственным его аргументом является число или ссылка на ячейку, в которой содержится числовое выражение. Синтаксис принимает следующую форму:

Способ 1: ручной ввод функции

Для опытного пользователя, ввиду простоты синтаксиса данной функции, легче и быстрее всего произвести её ручной ввод.

    Выделяем ячейку, в которой должен находиться результат расчета, и записываем формулу типа:

Вместо аргумента «Число», естественно, подставляем конкретное числовое значение. Так арктангенс четырех будет вычисляться по следующей формуле:

Если числовое значение находится в какой-то определенной ячейке, то аргументом функции может служить её адрес.

  • Для вывода результатов расчета на экран нажимаем на кнопку Enter.
  • Способ 2: вычисление при помощи Мастера функций

    Но для тех пользователей, которые ещё не полностью овладели приемами ручного ввода формул или просто привыкли с ними работать исключительно через графический интерфейс, больше подойдет выполнение расчета с помощью Мастера функций.

      Выделяем ячейку для вывода результата обработки данных. Жмем на кнопку «Вставить функцию», размещенную слева от строки формул.

    Происходит открытие Мастера функций. В категории «Математические» или «Полный алфавитный перечень» следует найти наименование «ATAN». Для запуска окна аргументов выделяем его и жмем на кнопку «OK».

    После выполнения указанных действий откроется окно аргументов оператора. В нем имеется только одно поле – «Число». В него нужно ввести то число, арктангенс которого следует рассчитать. После этого жмем на кнопку «OK».

    Также в качестве аргумента можно использовать ссылку на ячейку, в которой находится это число. В этом случае проще не вводить координаты вручную, а установить курсор в область поля и просто выделить на листе тот элемент, в котором расположено нужное значение. После этих действий адрес этой ячейки отобразится в окне аргументов. Затем, как и в предыдущем варианте, жмем на кнопку «OK».

  • После выполнения действий по вышеуказанному алгоритму в предварительно обозначенной ячейке отобразится значение арктангенса в радианах того числа, которое было задано в функции.
  • Как видим, нахождение из числа арктангенса в Экселе не является проблемой. Это можно сделать с помощью специального оператора ATAN с довольно простым синтаксисом. Использовать данную формулу можно как путем ручного ввода, так и через интерфейс Мастера функций.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Построение графиков тригонометрических функций с использованием MS Excel

    Тип урока: урок обобщения и систематизации знаний

    Цели:

    • научить строить графики тригонометрических функций средствами MS Excel
    • закрепить навыки работы в электронных таблицах,
    • углубить представления учащихся о взаимосвязи предметов и прикладной ориентации курса информатики.

    Если вычислений много, а времени мало, то доверьтесь электронным таблицам

    1. Сообщение целей и задач урока

    Читать еще:  Как сделать всплывающую картинку в excel в ячейку?

    – Ребята, сегодня мы продолжим знакомиться с возможностями электронных таблиц Excel. Давайте вспомним, для чего предназначены электронные таблицы? (Автоматизация расчетов).
    – Что вы уже умеете делать в электронных таблицах? (Создавать и форматировать таблицу, работать с типами данных, решать задачи используя относительную и абсолютную ссылки, строить диаграммы).
    – На уроках математики вы изучили тригонометрические функции и их графики. При построении графиков тригонометрических функций необходимо учесть множество нюансов. Начертить синусоиду или косинусоиду красиво – это уже искусство, а если необходимо график растянуть, сжать или симметрично отобразить относительно какой-либо оси – это может вызвать затруднения. И здесь нам на помощь нам придут электронные таблицы MS Excel. Вы узнаете как с их помощью быстро и красиво построить график.
    Сегодня на уроке мы познакомимся с алгоритмом построения графика тригонометрической функции.
    Эпиграфом к уроку я взяла слова «Если вычислений много, а времени мало, то доверьтесь электронным таблицам»

    2. Актуализация знаний

    Фронтальный опрос (за правильный ответ даем красную карточку)

    1. С чего начинается ввод формулы в ячейку? (Со знака равенства)
    2. На каком языке набирается формула в MS Excel? (Английском)
    3. Как скопировать формулу в другие ячейки?(С помощью маркера автозаполнения)
    4. Как изменить число десятичных знаков после запятой в отображаемом числе? (Выделить, Формат, Ячейки, вкладка Число, Числовой формат, …..)
    5. Что означает запись ###### в ячейке? (Длина водимых данных превышает ширину ячейки)
    6. Каким образом набирается формула, содержащая какую-либо функцию? (Выделить ячейку, в которую нужно вставить первое значение функции;Вставка, Функция, выбрать Категорию и саму функцию)
    7. Каким образом набирается формула, содержащая сложную функцию, например, y = |x 2 |? (Вставляется внешняя функция с пустым аргументом, затем левее строки редактирования формул из раскрывающегося списка выбирается внутренняя функция)
    8. Как вставить какой-либо символ, например, математический в ячейку? (Вставка, Символ, в появившемся диалоговом окне выбрать шрифт Symbol и нужный символ)

    На прошлом уроке вы строили графики элементарных функций. Давайте повторим алгоритм построения графика (Учащиеся называют шаги построения графика функции, а учитель показывает соответствующий пункт алгоритма на доске (используется проектор) и если необходимо дополняет ответ учеников) (см. Приложение 1).

    3. Изучение нового

    С использованием презентации (см. Приложение 2) учитель рассказывает, как строится график тригонометрической функций, а затем выполняет его построение в электронных таблицах.

    Задание. Построить в MS Excel графики функций y = Sin x и y = |1 – sin x| на промежутке [–360 о ; 360 о ] с шагом 15 о .

    4. Закрепление полученных знаний

    Каждому ученику даётся карточка с заданием и оценочный лист, который после выполнения задания отдается учителю (Каждый пункт в оценочном листе является шагом построения графика тригонометрической функции с использованием MSExcel). Презентация находится в сетевой папке, и любой ученик может ею воспользоваться при выполнении своего задания.

    Задание. Построить в MS Excel графики функций на промежутке [–36 о ;36 о ] с шагом 15 о .

    5. Проверка построенных графиков и разбор нюансов

    Один из учеников строил график y = |Sin x| / Sin x на промежутке [–360 о ;360 о ] с шагом 15 о . На доске демонстрируется этот график и график, построенный традиционным алгебраическим способом.

    С помощью этого примера обращается внимание учащихся, что существуют функции, графики которых в электронных таблицах строятся неточно. Учащихся можно попросить найти неточности в графике, построенном с помощью MS Excel и попросить объяснить их.

    График, построенный традиционным алгебраическим

    График, построенный с использованием МS Exel

    6. Подведение итогов

    Учеников просят ответить на вопросы:

    1. В чем достоинства и недостатки алгебраического метода построения графиков функций и построения графиков с использованием электронных таблиц?
    2. Каким образом можно использовать полученные на уроке знания в учебе?

    Вывод. MS Excel облегчает построение графиков функций, но без глубоких математических знаний построить точные графики сложных функций (тригонометрических функций, функций с модулем, функций имеющих точки разрыва) невозможно.

    Читать еще:  Как сделать прогрессию в excel 2013?

    Математика – это царица всех наук!

    7. Постановка Д/З.

    Построить график функции y= 1 + 0,5*ctg(X–П/4) на промежутке [–360 о ;360 о ] с шагом 15 о .

    Тригонометрические функции SIN COS в Excel для синуса и косинуса

    Функция SIN в Excel используется для вычисления синуса угла, заданного в радианах, и возвращает соответствующее значение.

    Функция SINH в Excel возвращает значение гиперболического синуса заданного вещественного числа.

    Функция COS в Excel вычисляет косинус угла, заданного в радианах, и возвращает соответствующее значение.

    Функция COSH возвращает значение гиперболического косинуса заданного вещественного числа.

    Примеры использования функций SIN, SINH, COS и COSH в Excel

    Пример 1. Путешественник движется вверх на гору с уклоном в 17°. Скорость движения постоянная и составляет 4 км/ч. Определить, на какой высоте относительно начальной точке отсчета он окажется спустя 3 часа.

    Для решения используем формулу:

    • B2*B3 – произведение скорости на время пути, результатом которого является пройденное расстояние (гипотенуза прямоугольного треугольника);
    • SIN(РАДИАНЫ(B1)) – синус угла уклона, выраженного в радианах с помощью функции РАДИАНЫ.

    В результате расчетов мы получили величину малого катета прямоугольного треугольника, который характеризует высоту подъема путешественника.

    Таблица синусов и косинусов в Excel

    Пример 2. Ранее в учебных заведениях широко использовались справочники тригонометрических функций. Как можно создать свой простой справочник с помощью Excel для косинусов углов от 0 до 90?

    Заполним столбцы значениями углов в градусах:

    Для заполнения используем функцию COS как формулу массива. Пример заполнения первого столбца:

    Вычислим значения для всех значений углов. Полученный результат:

    Примечание: известно, что cos(90°)=0, однако функция РАДИАНЫ(90) определяет значение радианов угла с некоторой погрешностью, поэтому для угла 90° было получено отличное от нуля значение.

    Аналогичным способом создадим таблицу синусов в Excel:

    Построение графика функций SINH и COSH в Excel

    Пример 3. Построить графики функций sinh(x) и cosh(x) для одинаковых значений независимой переменной и сравнить их.

    Формула для нахождения синусов гиперболических:

    Формула для нахождения косинусов гиперболических:

    Таблица полученных значений:

    Построим графики обеих функций на основе имеющихся данных. Выделите диапазон ячеек A1:C12 и выберите инструмент «ВСТАВКА»-«Диаграммы»-«Вставь точечную (X,Y) или пузырьковую диаграмму»-«Точечная с гладкими кривыми и маркерами»:

    Как видно, графики совпадают на промежутке (0;+∞), а в области отрицательных значений x части графиков являются зеркальными отражениями друг друга.

    Особенности использования тригонометрических функций в Excel

    Синтаксис функции SIN:

    Синтаксис функции SINH:

    Синтаксис функции COS:

    Синтаксис функции COSH:

    Каждая из приведенных выше функций принимает единственный аргумент число, который характеризует угол, заданный в радианах (для SIN и COS) или любое значение из диапазона вещественных чисел, для которого требуется определить гиперболические синус или косинус (для SINH и COSH соответственно).

    1. Если в качестве аргумента любой из рассматриваемых функций были переданы текстовые данные, которые не могут быть преобразованы в числовое значение, результатом выполнения функций будет код ошибки #ЗНАЧ!. Например, функция =SIN(“1”) вернет результат 0,8415, поскольку Excel выполняет преобразование данных там, где это возможно.
    2. В качестве аргументов рассматриваемых функций могут быть переданы логические значения ИСТИНА и ЛОЖЬ, которые будут интерпретированы как числовые значения 1 и 0 соответственно.
    3. Все рассматриваемые функции могут быть использованы в качестве формул массива.
    1. Синус гиперболический рассчитывается по формуле: sinh(x)=0,5*(ex-e-x).
    2. Формула расчета косинуса гиперболического имеет вид: cosh(x)=0,5*( ex+e-x).
    3. При расчетах синусов и косинусов углов с использованием формул SIN и COS необходимо использовать радианные меры углов. Если угол указан в градусах, для перевода в радианную меру угла можно использовать два способа:
    • Функция РАДИАНЫ (например, =SIN(РАДИАНЫ(30)) вернет результат 0,5;
    • Выражение ПИ()*угол_в_градусах/180.
    Ссылка на основную публикацию
    Adblock
    detector