Как сделать в excel косинус?

Тригонометрия в Excel: основные функции

Формулы тригонометрии – редкая и сложная задача для работы в Майкрософт Эксель. Тем не менее, здесь есть ряд встроенных функций, помогающих в геометрических расчетах. В этом посте мы рассмотрим основные из них, которые, в компании с учебниками и справочниками, могут решить многие математические задачи. Они участвуют в расчете площади, объема, угла наклона и т.д. Если Вы школьник, студент, или работаете, например, в сфере строительства, эта статья будет Вам очень полезна.

Для корректного расчета геометрических величин, Вам понадобятся познания в элементарных расчетах и некоторые из функций Excel. Так, функция КОРЕНЬ извлечет квадратный корень из заданного числа. Например, запишем: =КОРЕНЬ(121) , и получим результат «11». Хотя правильным решением будет «11» и «-11», программа возвращает только положительный результат в таких случаях.

Еще одна функция – ПИ() , не нуждается в аргументах и является зарезервированной константой. Ее результатом будет известное число 3,1415, описывающее соотношение длины окружности к ее диаметру. Эту функцию-константу можно активно применять в расчетах.

Радианы в градусы и градусы в радианы

Тригонометрические функции Excel, до которых мы еще доберемся, используют запись угла в радианах. Эта общепринятая практика часто бывает ненаглядной, ведь нам привычнее выражать угол в градусах. Чтобы устранить эту проблему, есть две функции преобразования величин:

  • ГРУДУСЫ(Угол в радианах) – преобразует радиальные величины в градусы
  • РАДИАНЫ(Угол вградусах) – наоборот, преобразует градусы в радианы.

Пользуясь этими функциями, Вы обеспечиваете совместимость и наглядность вычислений.

Прямые тригонометрические функции

Конечно, Вы знаете эти функции:

  • COS(Угол в радианах) – косинус угла, соотношение между прилежащим катетом и гипотенузой прямоугольного треугольника
  • SIN(Угол в радианах) – синус угла, отношение противолежащего катета к гипотенузе

Для удобства чтения формул, можно использовать вложенную функцию РАДИАНЫ и задать угол в градусах. Например, формула =COS(РАДИАНЫ(180)) вернет результат «-1».

Производные тригонометрические функции

Еще две функции Вам так же знакомы – это тангенс и котангенс:

  • TAN(Угол в радианах) – отношение длины противолежащего катета к прилежащему
  • COT(Угол в радианах) – обратная величина – соотношение прилежащего угла к противолежащему.

Здесь так же рекомендую использовать функции преобразования величин РАДИАНЫ и ГРАДУСЫ.

Другие тригонометрические функции

Среди прочих тригонометрических функций можно выделить секанс и косеканс:

  • SEC(Угол в радианах) – отношение гипотенузы к прилежащему катету
  • CSC(Угол в радианах) – отношение гипотенузы к противолежащему катету

Легко заметить, что секанс – обратно-пропорциональная величина к косинусу, косеканс – к синусу.

Обратные тригонометрические функции

Такие функции выполняют обратный расчет по отношению к перечисленным выше:

  • Арккосинус – это угол, который образуют прилежащий катет и гипотенуза с определенным косинусом. Чтобы посчитать эту величину, используйте функцию ACOS(Значение косинуса) .
  • Арксинус – угол между противолежащим катетом и гипотенузой с определенным синусом, вычисляется так: ASIN(Значение синуса) .
  • Арктангенс – угол между противолежащим и прилежащим катетами для заданного тангенса: ATAN(Значение тангенса) .
  • Арккотангенс – угол, для которого справедливо заданное значение котангенса: ACOT(Значение котангенса).

Все перечисленные функции вернут угол в радианах. Естественно, для перевода его в градусы, используем функцию ГРАДУСЫ .

Знание и умелое применение перечисленных функций, конечно, не сделает Вас богом в тригонометрии, но все же позволит выполнить сложные расчеты, «стоимость» которых часто довольно высока. Научитесь комбинировать их с другими функциями, построением графиков, чтобы получить максимальный эффект от полученных знаний.

Это все о тригонометрических функциях, спасибо, что читаете мой блог и развиваетесь в своих знаниях. Следующую статью я напишу об округлении чисел и очень Вам рекомендую ее не пропустить!

Читать еще:  Как сделать коммерческое предложение в excel?

Тригонометрические функции SIN COS в Excel для синуса и косинуса

Функция SIN в Excel используется для вычисления синуса угла, заданного в радианах, и возвращает соответствующее значение.

Функция SINH в Excel возвращает значение гиперболического синуса заданного вещественного числа.

Функция COS в Excel вычисляет косинус угла, заданного в радианах, и возвращает соответствующее значение.

Функция COSH возвращает значение гиперболического косинуса заданного вещественного числа.

Примеры использования функций SIN, SINH, COS и COSH в Excel

Пример 1. Путешественник движется вверх на гору с уклоном в 17°. Скорость движения постоянная и составляет 4 км/ч. Определить, на какой высоте относительно начальной точке отсчета он окажется спустя 3 часа.

Для решения используем формулу:

  • B2*B3 – произведение скорости на время пути, результатом которого является пройденное расстояние (гипотенуза прямоугольного треугольника);
  • SIN(РАДИАНЫ(B1)) – синус угла уклона, выраженного в радианах с помощью функции РАДИАНЫ.

В результате расчетов мы получили величину малого катета прямоугольного треугольника, который характеризует высоту подъема путешественника.

Таблица синусов и косинусов в Excel

Пример 2. Ранее в учебных заведениях широко использовались справочники тригонометрических функций. Как можно создать свой простой справочник с помощью Excel для косинусов углов от 0 до 90?

Заполним столбцы значениями углов в градусах:

Для заполнения используем функцию COS как формулу массива. Пример заполнения первого столбца:

Вычислим значения для всех значений углов. Полученный результат:

Примечание: известно, что cos(90°)=0, однако функция РАДИАНЫ(90) определяет значение радианов угла с некоторой погрешностью, поэтому для угла 90° было получено отличное от нуля значение.

Аналогичным способом создадим таблицу синусов в Excel:

Построение графика функций SINH и COSH в Excel

Пример 3. Построить графики функций sinh(x) и cosh(x) для одинаковых значений независимой переменной и сравнить их.

Формула для нахождения синусов гиперболических:

Формула для нахождения косинусов гиперболических:

Таблица полученных значений:

Построим графики обеих функций на основе имеющихся данных. Выделите диапазон ячеек A1:C12 и выберите инструмент «ВСТАВКА»-«Диаграммы»-«Вставь точечную (X,Y) или пузырьковую диаграмму»-«Точечная с гладкими кривыми и маркерами»:

Как видно, графики совпадают на промежутке (0;+∞), а в области отрицательных значений x части графиков являются зеркальными отражениями друг друга.

Особенности использования тригонометрических функций в Excel

Синтаксис функции SIN:

Синтаксис функции SINH:

Синтаксис функции COS:

Синтаксис функции COSH:

Каждая из приведенных выше функций принимает единственный аргумент число, который характеризует угол, заданный в радианах (для SIN и COS) или любое значение из диапазона вещественных чисел, для которого требуется определить гиперболические синус или косинус (для SINH и COSH соответственно).

  1. Если в качестве аргумента любой из рассматриваемых функций были переданы текстовые данные, которые не могут быть преобразованы в числовое значение, результатом выполнения функций будет код ошибки #ЗНАЧ!. Например, функция =SIN(“1”) вернет результат 0,8415, поскольку Excel выполняет преобразование данных там, где это возможно.
  2. В качестве аргументов рассматриваемых функций могут быть переданы логические значения ИСТИНА и ЛОЖЬ, которые будут интерпретированы как числовые значения 1 и 0 соответственно.
  3. Все рассматриваемые функции могут быть использованы в качестве формул массива.
  1. Синус гиперболический рассчитывается по формуле: sinh(x)=0,5*(ex-e-x).
  2. Формула расчета косинуса гиперболического имеет вид: cosh(x)=0,5*( ex+e-x).
  3. При расчетах синусов и косинусов углов с использованием формул SIN и COS необходимо использовать радианные меры углов. Если угол указан в градусах, для перевода в радианную меру угла можно использовать два способа:
  • Функция РАДИАНЫ (например, =SIN(РАДИАНЫ(30)) вернет результат 0,5;
  • Выражение ПИ()*угол_в_градусах/180.

Как найти косинус угла с помощью функции COS в Excel

Если вам нужно найти косинус угла, используйте функцию COS в Microsoft Excel. Независимо от угла в градусах или радианах, это решение работает с небольшими изменениями. Следуйте этому пошаговому руководству, чтобы узнать, как легко воспользоваться преимуществами быстрых математических навыков Excel.

Инструкции в этой статье относятся к Excel 2019, 2016, 2013, 2010, 2007; Excel для Mac, Excel 365, Excel Online, Excel для Android, Excel для iPad и Excel для iPhone.

Читать еще:  Как сделать из одного столбца два в excel?

Найти косинус угла в Excel

Тригонометрическая функция косинуса, как синус и тангенс, основана на прямоугольном треугольнике (треугольник, содержащий угол, равный 90 градусам), как показано на рисунке ниже.

В математическом классе косинус угла определяется путем деления длины стороны, прилегающей к углу, на длину гипотенузы. В Excel косинус угла можно найти с помощью функции COS, если этот угол измеряется в радианах.

Функция COS экономит вам много времени и, возможно, много царапает голову, поскольку вам больше не нужно помнить, какая сторона треугольника примыкает к противоположному углу, а какая — к гипотенузе.

Понять градусы против радианов

Использование функции COS для определения косинуса угла может быть проще, чем делать это вручную, но, как уже упоминалось, важно понимать, что при использовании функции COS угол должен быть в радианах а не градусов.

Радианы связаны с радиусом круга. Один радиан составляет примерно 57 градусов.

Чтобы упростить работу с COS и другими функциями триггера Excel, используйте функцию Excel RADIANS для преобразования измеряемого угла из градусов в радианы, как показано в ячейке B2 на изображении выше. В этом примере угол 60 градусов преобразуется в 1,047197551 радиан.

Другие варианты преобразования градусов в радианы включают в себя вложение функции RADIANS внутри функции COS (как показано в строке 3 на изображении примера) и использование функции PI в формуле (как показано в строке 4 на изображении примера).

Тригонометрическое использование в Excel

Тригонометрия фокусируется на отношениях между сторонами и углами треугольника, и хотя многим из нас не нужно использовать его ежедневно, тригонометрия находит применение в ряде областей, включая архитектуру, физику, инженерию и геодезию.

Архитекторы, например, используют тригонометрию для расчетов, связанных с затенением от солнца, структурной нагрузкой и уклонами крыши.

Синтаксис и аргументы функции Excel COS

Синтаксис функции относится к макету функции и включает в себя имя функции, скобки и аргументы. Синтаксис для функции COS:

Число . Рассчитываемый угол в радианах. Для этого аргумента можно ввести размер угла в радианах или вместо него можно указать ссылку на ячейку для расположения этих данных на листе.

Используйте функцию Excel COS

Пример в этой статье охватывает шаги, используемые для ввода функции COS в ячейку C2 на изображении выше, чтобы найти косинус угла 60 градусов или 1,047197551 радиан.

Варианты входа в функцию COS включают ввод вручную всей функции или использование диалогового окна «Аргументы функции», как описано ниже.

Введите функцию COS

Выберите ячейку C2 на рабочем листе, чтобы сделать ее активной.

Выберите вкладку Формулы на панели ленты.

Выберите Math & Trig на ленте, чтобы открыть раскрывающийся список функций.

Выберите COS в списке, чтобы открыть диалоговое окно «Аргументы функции». В Excel для Mac откроется построитель формул.

В диалоговом окне поместите курсор в числовую строку.

Выберите ячейку B2 на листе, чтобы ввести ссылку на эту ячейку в формулу.

Выберите ОК , чтобы завершить формулу и вернуться на лист. За исключением Excel для Mac, где вы выбираете Готово .

Ответ 0.5 появляется в ячейке C2, , которая является косинусом угла 60 градусов.

Выберите ячейку C2, чтобы увидеть полную функцию в строке формул над рабочим листом.

Устранение неполадок с функцией Excel COS

#VALUE! Ошибки

Функция COS отображает # ЗНАЧЕНИЕ!ошибка, если ссылка, используемая в качестве аргумента функции, указывает на ячейку, содержащую текстовые данные. Переключите тип данных ячейки на Числа, чтобы исправить ошибку.

Результаты пустых ячеек

Если ячейка указывает на пустую ячейку, функция возвращает значение единицы. Триггерные функции Excel интерпретируют пустые ячейки как ноль, а косинус нулевых радиан равен единице. Исправьте ошибку, указав свою функцию в правой ячейке.

Построение графиков тригонометрических функций с использованием MS Excel

Тип урока: урок обобщения и систематизации знаний

Цели:

  • научить строить графики тригонометрических функций средствами MS Excel
  • закрепить навыки работы в электронных таблицах,
  • углубить представления учащихся о взаимосвязи предметов и прикладной ориентации курса информатики.

Если вычислений много, а времени мало, то доверьтесь электронным таблицам

1. Сообщение целей и задач урока

Читать еще:  Как сделать сворачивающийся список в excel?

– Ребята, сегодня мы продолжим знакомиться с возможностями электронных таблиц Excel. Давайте вспомним, для чего предназначены электронные таблицы? (Автоматизация расчетов).
– Что вы уже умеете делать в электронных таблицах? (Создавать и форматировать таблицу, работать с типами данных, решать задачи используя относительную и абсолютную ссылки, строить диаграммы).
– На уроках математики вы изучили тригонометрические функции и их графики. При построении графиков тригонометрических функций необходимо учесть множество нюансов. Начертить синусоиду или косинусоиду красиво – это уже искусство, а если необходимо график растянуть, сжать или симметрично отобразить относительно какой-либо оси – это может вызвать затруднения. И здесь нам на помощь нам придут электронные таблицы MS Excel. Вы узнаете как с их помощью быстро и красиво построить график.
Сегодня на уроке мы познакомимся с алгоритмом построения графика тригонометрической функции.
Эпиграфом к уроку я взяла слова «Если вычислений много, а времени мало, то доверьтесь электронным таблицам»

2. Актуализация знаний

Фронтальный опрос (за правильный ответ даем красную карточку)

  1. С чего начинается ввод формулы в ячейку? (Со знака равенства)
  2. На каком языке набирается формула в MS Excel? (Английском)
  3. Как скопировать формулу в другие ячейки?(С помощью маркера автозаполнения)
  4. Как изменить число десятичных знаков после запятой в отображаемом числе? (Выделить, Формат, Ячейки, вкладка Число, Числовой формат, …..)
  5. Что означает запись ###### в ячейке? (Длина водимых данных превышает ширину ячейки)
  6. Каким образом набирается формула, содержащая какую-либо функцию? (Выделить ячейку, в которую нужно вставить первое значение функции;Вставка, Функция, выбрать Категорию и саму функцию)
  7. Каким образом набирается формула, содержащая сложную функцию, например, y = |x 2 |? (Вставляется внешняя функция с пустым аргументом, затем левее строки редактирования формул из раскрывающегося списка выбирается внутренняя функция)
  8. Как вставить какой-либо символ, например, математический в ячейку? (Вставка, Символ, в появившемся диалоговом окне выбрать шрифт Symbol и нужный символ)

На прошлом уроке вы строили графики элементарных функций. Давайте повторим алгоритм построения графика (Учащиеся называют шаги построения графика функции, а учитель показывает соответствующий пункт алгоритма на доске (используется проектор) и если необходимо дополняет ответ учеников) (см. Приложение 1).

3. Изучение нового

С использованием презентации (см. Приложение 2) учитель рассказывает, как строится график тригонометрической функций, а затем выполняет его построение в электронных таблицах.

Задание. Построить в MS Excel графики функций y = Sin x и y = |1 – sin x| на промежутке [–360 о ; 360 о ] с шагом 15 о .

4. Закрепление полученных знаний

Каждому ученику даётся карточка с заданием и оценочный лист, который после выполнения задания отдается учителю (Каждый пункт в оценочном листе является шагом построения графика тригонометрической функции с использованием MSExcel). Презентация находится в сетевой папке, и любой ученик может ею воспользоваться при выполнении своего задания.

Задание. Построить в MS Excel графики функций на промежутке [–36 о ;36 о ] с шагом 15 о .

5. Проверка построенных графиков и разбор нюансов

Один из учеников строил график y = |Sin x| / Sin x на промежутке [–360 о ;360 о ] с шагом 15 о . На доске демонстрируется этот график и график, построенный традиционным алгебраическим способом.

С помощью этого примера обращается внимание учащихся, что существуют функции, графики которых в электронных таблицах строятся неточно. Учащихся можно попросить найти неточности в графике, построенном с помощью MS Excel и попросить объяснить их.

График, построенный традиционным алгебраическим

График, построенный с использованием МS Exel

6. Подведение итогов

Учеников просят ответить на вопросы:

  1. В чем достоинства и недостатки алгебраического метода построения графиков функций и построения графиков с использованием электронных таблиц?
  2. Каким образом можно использовать полученные на уроке знания в учебе?

Вывод. MS Excel облегчает построение графиков функций, но без глубоких математических знаний построить точные графики сложных функций (тригонометрических функций, функций с модулем, функций имеющих точки разрыва) невозможно.

Математика – это царица всех наук!

7. Постановка Д/З.

Построить график функции y= 1 + 0,5*ctg(X–П/4) на промежутке [–360 о ;360 о ] с шагом 15 о .

Ссылка на основную публикацию
Adblock
detector